Features

- Low-voltage and Standard-voltage Operation
 - 2.7 (V_{CC} = 2.7V to 5.5V)
 - 1.8 (V_{cc} = 1.8V to 5.5V)
- User Selectable Internal Organization
 16K: 2048 x 8 or 1024 x 16
- Three-wire Serial Interface
- Sequential Read Operation
- Schmitt Trigger, Filtered Inputs for Noise Suppression
- 2 MHz Clock Rate (5V) Compatibility
- Self-timed Write Cycle (10 ms max)
- High Reliability
 - Endurance: 1 Million Write Cycles
 - Data Retention: 100 Years
- Automotive Devices Available
- 8-lead JEDEC PDIP, 8-lead JEDEC SOIC, 8-lead Ultra Thin Mini-MAP (MLP 2x3), and 8-lead TSSOP Packages
- Die Sales: Wafer Form, Waffle Pack and Bumped Wafers

Description

The AT93C86A provides 16384 bits of serial electrically erasable programmable read only memory (EEPROM), organized as 1024 words of 16 bits each when the ORG pin is connected to V_{CC} and 2048 words of eight bits each when it is tied to ground. The device is optimized for use in many industrial and commercial applications where low-power and low-voltage operations are essential. The AT93C86A is available in space saving 8-lead PDIP, 8-lead JEDEC SOIC, 8-lead Ultra Thin Mini-MAP (MLP 2x3), and 8-lead TSSOP packages.

 Table 1. Pin Configurations

	=
Pin Name	Function
CS	Chip Select
SK	Serial Data Clock
DI	Serial Data Input
DO	Serial Data Output
GND	Ground
VCC	Power Supply
ORG	Internal Organization
NC	No Connect

8-lead Ultra Thin Mini-MAP (MLP 2x3)						
VCC	8	1	CS			
NC	7	2	SK			
ORG	6	3	DI			
GND	5	4	DO			

Bottom View

8-lead PDIP						
	\square					
CS 🗆	1	8	⊐ vcc			
SK 🗆	2	7	□ NC			
DI 🗆	3	6	🗆 ORG			
DO 🗆	4	5	🗆 GND			
	8-lead S	SOI	2			
<u> </u>	1	8				

03	1	0	
SK 🗔	2	7	
DI 🗔	3	6	🗀 org
DO 🗔	4	5	🗀 GND

8-lead TSSOP					
8					
7					
6	🗌 ORG				
5	- GND				
	8 7 6				

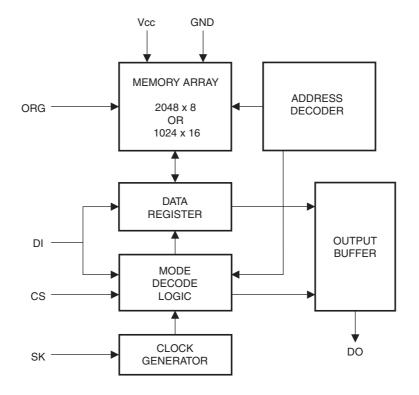
Three-wire Serial EEPROM

16K (2048 x 8 or 1024 x 16)

AT93C86A

Rev. 3408H-SEEPR-1/07

AMEL®


The AT93C86A is enabled through the Chip Select pin (CS), and accessed via a threewire serial interface consisting of Data Input (DI), Data Output (DO), and Shift Clock (SK). Upon receiving a Read instruction at DI, the address is decoded and the data is clocked out serially on the data output pin DO. The Write cycle is completely self-timed and no separate Erase cycle is required before Write. The Write cycle is only enabled when the part is in the Erase/Write Enable state. When CS is brought "high" following the initiation of a Write cycle, the DO pin outputs the Ready/Busy status of the part. The AT93C86A is available in a 2.7V to 5.5V version.

Absolute Maximum Ratings*

Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on any Pin with Respect to Ground–1.0V to +7.0V
Maximum Operating Voltage6.25V
DC Output Current 5.0 mA

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

Figure 1. Block Diagram

Note: When the ORG pin is connected to Vcc, the x 16 organization is selected. When it is connected to ground, the x 8 organization is selected. If the ORG pin is left unconnected and the application does not load the input beyond the capability of the internal 1 Meg ohm pullup, then the x 16 organization is selected.

Table 2. Pin Capacitance⁽¹⁾

Applicable over recommended operating range from $T_A = 25^{\circ}C$, f = 1.0 MHz, $V_{CC} = +5.0V$ (unless otherwise noted)

Symbol	Test Conditions	Мах	Units	Conditions
C _{OUT}	Output Capacitance (DO)	5	pF	V _{OUT} = 0V
C _{IN}	Input Capacitance (CS, SK, DI)	5	pF	$V_{IN} = 0V$

Note: 1. This parameter is characterized and is not 100% tested.

Table 3. DC Characteristics

Applicable over recommended operating range from: $T_{AI} = -40^{\circ}C$ to +85°C, $V_{CC} = +1.8V$ to +5.5V, $T_{AE} = -40^{\circ}C$ to +125°C, $V_{CC} = +1.8V$ to +5.5V (unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
V _{CC1}	Supply Voltage			1.8		5.5	V
V _{CC2}	Supply Voltage			2.7		5.5	V
V _{CC3}	Supply Voltage			4.5		5.5	V
	Oursely Ourseast		READ at 1.0 MHz		0.5	2.0	mA
I _{CC}	Supply Current	$V_{CC} = 5.0V$	WRITE at 1.0 MHz		0.5	2.0	mA
I _{SB1}	Standby Current	V _{CC} = 1.8V	CS = 0V		0	0.1	μA
I _{SB2}	Standby Current	V _{CC} = 2.7V	CS = 0V		6.0	10.0	μA
I _{SB3}	Standby Current	V _{CC} = 5.0V	CS = 0V		17	30	μA
I _{IL}	Input Leakage	$V_{IN} = 0V$ to V_{CC}			0.1	3.0	μA
I _{OL}	Output Leakage	V_{IN} = 0V to V_{CC}			0.1	3.0	μA
$V_{IL1}^{(1)}$ $V_{IH1}^{(1)}$	Input Low Voltage Input High Voltage	$2.7V \leq V_{CC} \leq 5.5V$		0.6 2.0		0.8 V _{CC} + 1	V
$V_{IL2}^{(1)}$ $V_{IH2}^{(1)}$	Input Low Voltage Input High Voltage	$1.8V \le V_{CC} \le 2.7V$		-0.6 V _{CC} x 0.7		V _{CC} x 0.3 V _{CC} + 1	V
V _{OL1}	Output Low Voltage		I _{OL} = 2.1 mA			0.4	V
V _{OH1}	Output High Voltage	$2.7V \leq V_{CC} \leq 5.5V$	I _{OH} = -0.4 mA	2.4			V
V _{OL2}	Output Low Voltage		I _{OL} = 0.15 mA			0.2	V
V _{OH2}	Output High Voltage	$1.8V \le V_{CC} \le 2.7V$	I _{OH} = –100 μA	V _{CC} – 0.2			V

Note: 1. V_{IL} min and V_{IH} max are reference only and are not tested.

Table 4. AC Characteristics

Applicable over recommended operating range from $T_{AI} = -40^{\circ}C$ to + 85°C, $T_{AE} = -40^{\circ}C$ to +125°C, V_{CC} = As Specified, CL = 1 TTL Gate and 100 pF (unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Max	Units
f _{SK}	SK Clock Frequency	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$	/	0 0 0		2 1 0.25	MHz
t _{sĸн}	SK High Time	$\begin{array}{c} 2.7V \leq V_{CC} \\ 1.8V \leq V_{CC} \\ \leq 5.5V \end{array}$		250 1000			ns
t _{SKL}	SK Low Time	$\begin{array}{c} 2.7V \leq V_{CC} \leq 5.5V\\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$		250 1000			ns
t _{cs}	Minimum CS Low Time	$\begin{array}{l} 2.7V \leq V_{CC} \ \leq 5.5V \\ 1.8V \leq V_{CC} \ \leq 5.5V \end{array}$		250 1000			ns
t _{css}	CS Setup Time	Relative to SK	$\begin{array}{l} 2.7V \leq V_{CC} \\ 1.8V \leq V_{CC} \\ \leq 5.5V \end{array}$	50 200			ns
t _{DIS}	DI Setup Time	Relative to SK	$\begin{array}{l} 2.7V \leq V_{CC} \ \leq 5.5V \\ 1.8V \leq V_{CC} \ \leq 5.5V \end{array}$	100 400			ns
t _{CSH}	CS Hold Time	Relative to SK		0			ns
t _{DIH}	DI Hold Time	Relative to SK	$\begin{array}{l} 2.7V \leq V_{CC} \ \leq 5.5V \\ 1.8V \leq V_{CC} \ \leq 5.5V \end{array}$	100 400			ns
t _{PD1}	Output Delay to "1"	AC Test	$\begin{array}{l} 2.7V \leq V_{CC} \\ 1.8V \leq V_{CC} \\ \leq 5.5V \end{array}$			250 1000	ns
t _{PD0}	Output Delay to "0"	AC Test	$\begin{array}{l} 2.7V \leq V_{CC} \ \leq 5.5V \\ 1.8V \leq V_{CC} \ \leq 5.5V \end{array}$			250 1000	ns
t _{SV}	CS to Status Valid	AC Test	$\begin{array}{c} 2.7V \leq V_{CC} \ \leq 5.5V \\ 1.8V \leq V_{CC} \ \leq 5.5V \end{array}$			250 1000	ns
t _{DF}	CS to DO in High Impedance	AC Test CS = V _{IL}	$\begin{array}{l} 2.7V \leq V_{CC} \\ 1.8V \leq V_{CC} \\ \leq 5.5V \end{array}$			150 400	ns
+		•	$1.8V \leq V_{CC} \leq 5.5V$	0.1	3	10	ms
t _{WP}	Write Cycle Time						ms
Endurance ⁽¹⁾	5.0V, 25°C	5.0V, 25°C		1M			Write Cycle

Note: 1. This parameter is ensured by characterization.

			Address		Data		
Instruction	SB	Op Code	x 8	x 16	x 8	x 16	Comments
READ	1	10	$A_{10} - A_0$	$A_{9} - A_{0}$			Reads data stored in memory, at specified address.
EWEN	1	00	11XXXXXXXXXX	11XXXXXXXX			Write enable must precede all programming modes.
ERASE	1	11	A ₁₀ – A ₀	$A_{9} - A_{0}$			Erases memory location $A_n - A_0$.
WRITE	1	01	$A_{10} - A_0$	$A_{9} - A_{0}$	$D_{7} - D_{0}$	D ₁₅ -D ₀	Writes memory location $A_n - A_0$.
ERAL	1	00	10XXXXXXXXXX	10XXXXXXXX			Erases all memory locations. Valid only at V_{CC} = 4.5V to 5.5V.
WRAL	1	00	01XXXXXXXXXX	01XXXXXXXX	$D_{7} - D_{0}$	D ₁₅ -D ₀	Writes all memory locations. Valid when V_{CC} = 4.5V to 5.5V and Disable Register cleared.
EWDS	1	00	00XXXXXXXXX	00XXXXXXXX			Disables all programming instructions.

Table 5. Instruction Set for the AT93C86A

Functional Description

The AT93C86A is accessed via a simple and versatile three-wire serial communication interface. Device operation is controlled by seven instructions issued by the host processor. *A valid instruction starts with a rising edge of CS* and consists of a Start Bit (logic "1") followed by the appropriate Op Code and the desired memory address location.

READ (READ): The Read (READ) instruction contains the address code for the memory location to be read. After the instruction and address are decoded, data from the selected memory location is available at the serial output pin DO. Output data changes are synchronized with the rising edges of serial clock SK. It should be noted that a dummy bit (logic "0") precedes the 8- or 16-bit data output string. The AT93C86A supports sequential read operations. The device will automatically increment the internal address pointer and clock out the next memory location as long as CS is held high. In this case, the dummy bit (logic "0") will not be clocked out between memory locations, thus allowing for a continuous stream of data to be read.

ERASE/WRITE (EWEN): To assure data integrity, the part automatically goes into the Erase/Write Disable (EWDS) state when power is first applied. An Erase/Write Enable (EWEN) instruction must be executed first before any programming instructions can be carried out. Please note that once in the EWEN state, programming remains enabled until an EWDS instruction is executed or V_{CC} power is removed from the part.

ERASE (ERASE): The Erase (ERASE) instruction programs all bits in the specified memory location to the logical "1" state. The self-timed erase cycle starts once the ERASE instruction and address are decoded. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). A logic "1" at pin DO indicates that the selected memory location has been erased, and the part is ready for another instruction.

WRITE (WRITE): The Write (WRITE) instruction contains the 8 or 16 bits of data to be written into the specified memory location. The self-timed programming cycle t_{WP} starts after the last bit of data is received at serial data input pin DI. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of

250 ns (t_{CS}). A logic "0" at DO indicates that programming is still in progress. A logic "1" indicates that the memory location at the specified address has been written with the data pattern contained in the instruction and the part is ready for further instructions. A Ready/Busy status cannot be obtained if the CS is brought high after the end of the self-timed programming cycle t_{WP} .

ERASE ALL (ERAL): The Erase All (ERAL) instruction programs every bit in the memory array to the logic "1" state and is primarily used for testing purposes. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). The ERAL instruction is valid only at V_{CC} = 5.0V ± 10%.

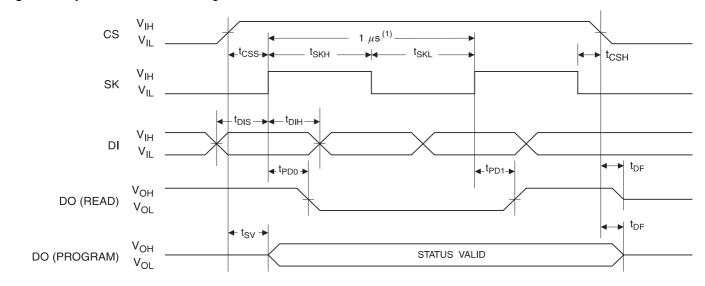
WRITE ALL (WRAL): The Write All (WRAL) instruction programs all memory locations with the data patterns specified in the instruction. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). The WRAL instruction is valid only at V_{CC} = 5.0V ± 10%.

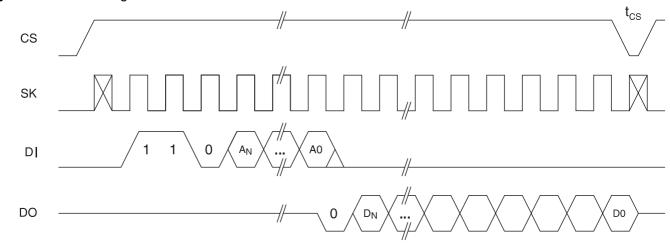
ERASE/WRITE DISABLE (EWDS): To protect against accidental data disturbance, the Erase/Write Disable (EWDS) instruction disables all programming modes and should be executed after all programming operations. The operation of the READ instruction is independent of both the EWEN and EWDS instructions and can be executed at any time.

6

AT93C86A

Timing Diagrams




Figure 2. Synchronous Data Timing

Note: 1. This is the minimum SK period.

Organization Key for Timing Diagrams

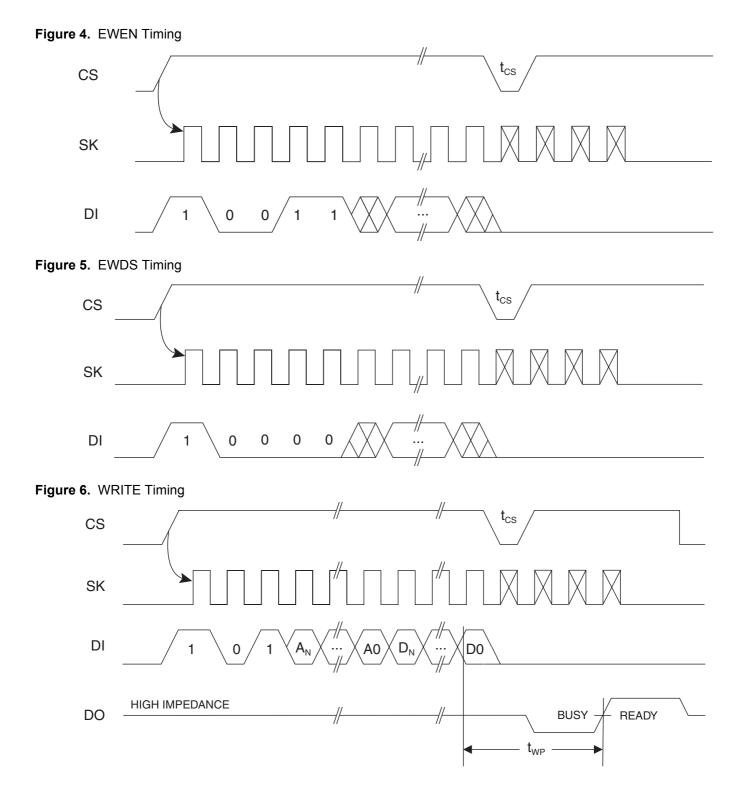
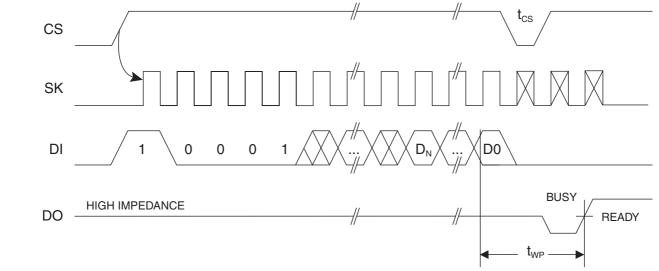
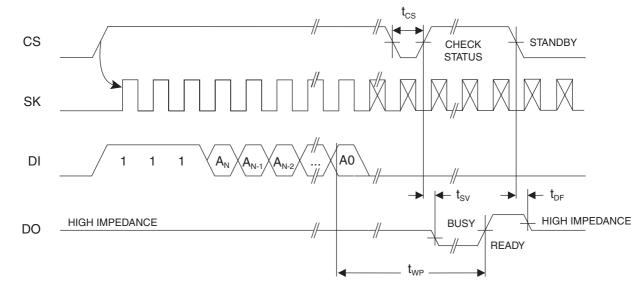

	AT93C86A (16K)		
I/O	x 8	x 16	
A _N	A ₁₀	A ₉	
D _N	D ₇	D ₁₅	

Figure 3. READ Timing


AIMEL


8

AT93C86A

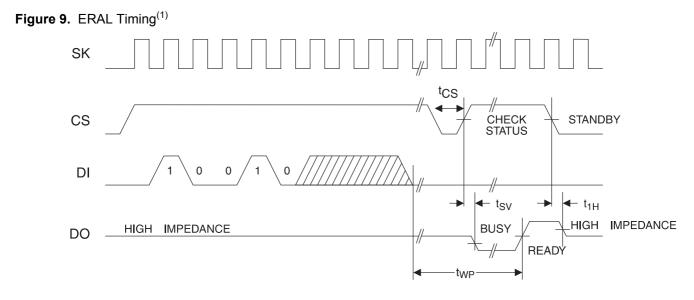

Note: 1. Valid only at V_{CC} = 4.5V to 5.5V.

Figure 8. ERASE Timing

AMEL

Note: 1. Valid only at V_{CC} = 4.5V to 5.5V.

AT93C86A Ordering Information⁽¹⁾

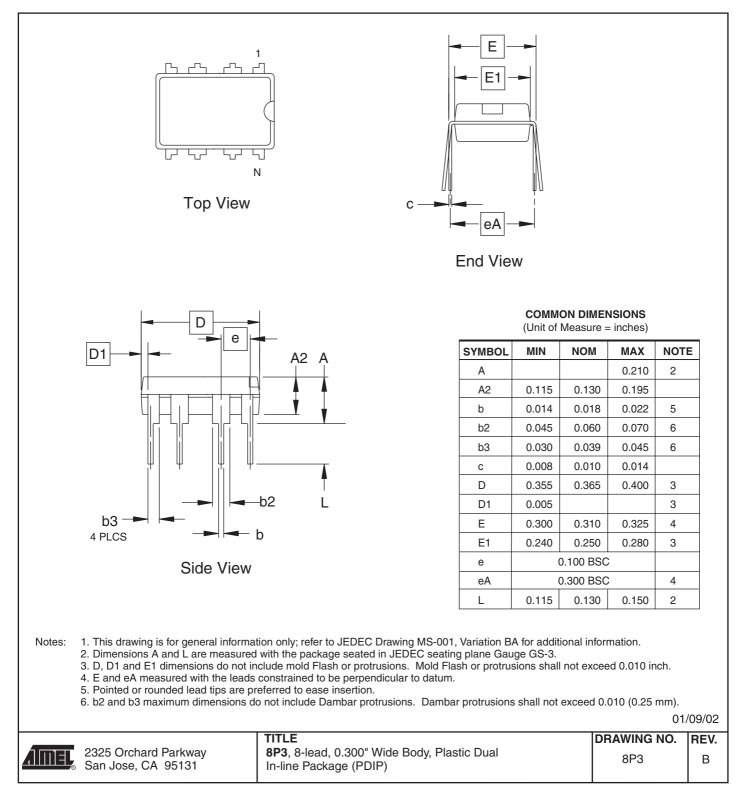
Ordering Code	Package	Operation Range
AT93C86A-10PU-2.7 ⁽²⁾ AT93C86A-10PU-1.8 ⁽²⁾ AT93C86A-10SU-2.7 ⁽²⁾ AT93C86A-10SU-1.8 ⁽²⁾ AT93C86A-10TU-2.7 ⁽²⁾ AT93C86A-10TU-1.8 ⁽²⁾ AT93C86AY1-10YU-1.8 ⁽²⁾ (Not recommended for new design) AT93C86AY6-10YH-1.8 ⁽³⁾	8P3 8P3 8S1 8S1 8A2 8A2 8A2 8Y1 8Y6	Lead-Free/Halogen-Free/ Industrial Temperature (–40°C to 85°C)
AT93C86A-W1.8-11 ⁽⁴⁾	Die Sale	Industrial Temperature (-40°C to 85°C)

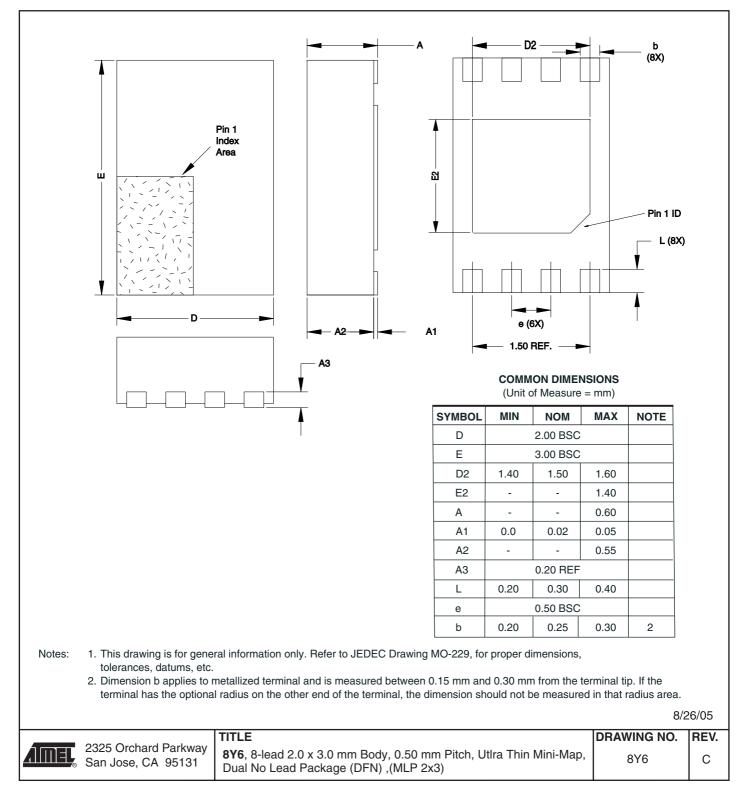
Notes: 1. For 2.7V devices used in a 4.5V to 5.5V range, please refer to performance values in the AC and DC characteristics tables.

2. "U" designates Green package + RoHS compliant.

3. "H" designates Green Package + RoHS compliant, with NiPdAu Lead Finish.

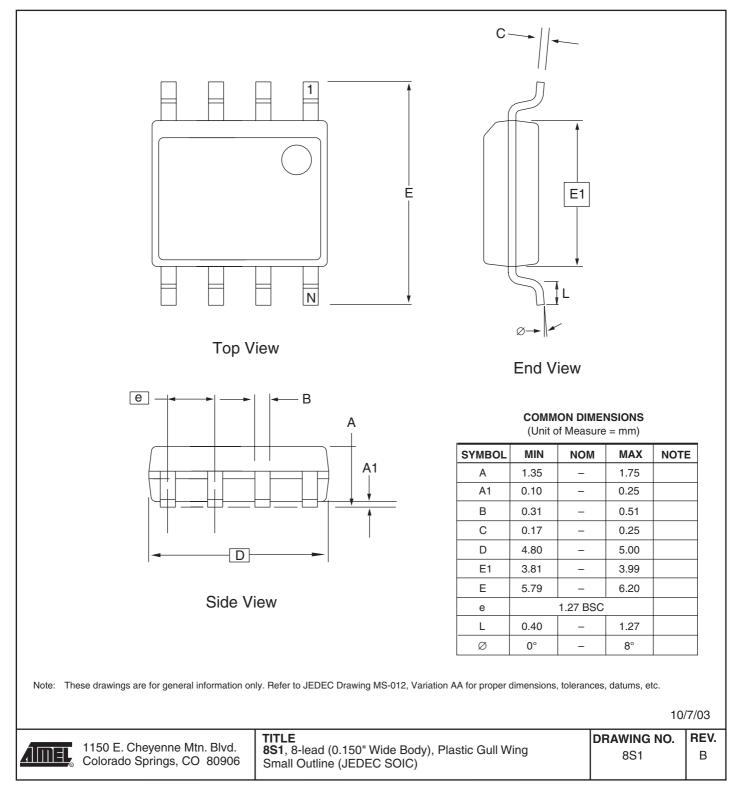
4. Available in Waffle pack and Wafer form; order as SL788 for inkless Wafer form. Bumped die available upon request. Please contact Serial EEPROM marketing.

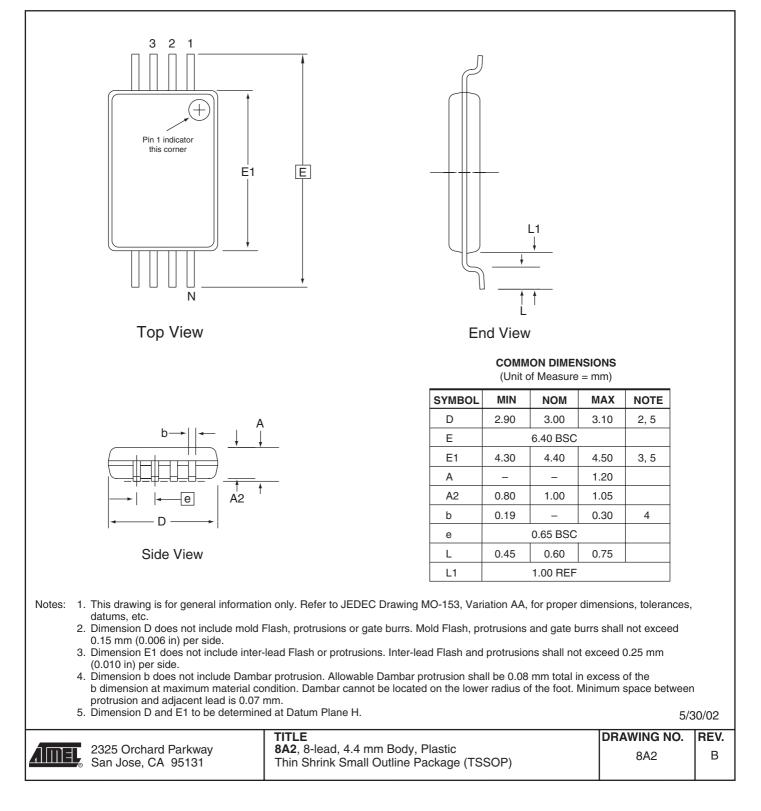

Package Type			
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)		
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)		
8A2	8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)		
8Y1	8-lead, 4.90 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP)		
8Y6	8-lead, 2.00 mm x 3.00 mm Body, 0.50 mm Pitch, Ultra Thin Mini-MAP, Dual No Lead Package (DFN), (MLP 2x3 mm)		
Options			
-2.7	Low Voltage (2.7V to 5.5V)		
-1.8	Low Voltage (1.8V to 5.5V)		


Packaging Information

8P3 – PDIP

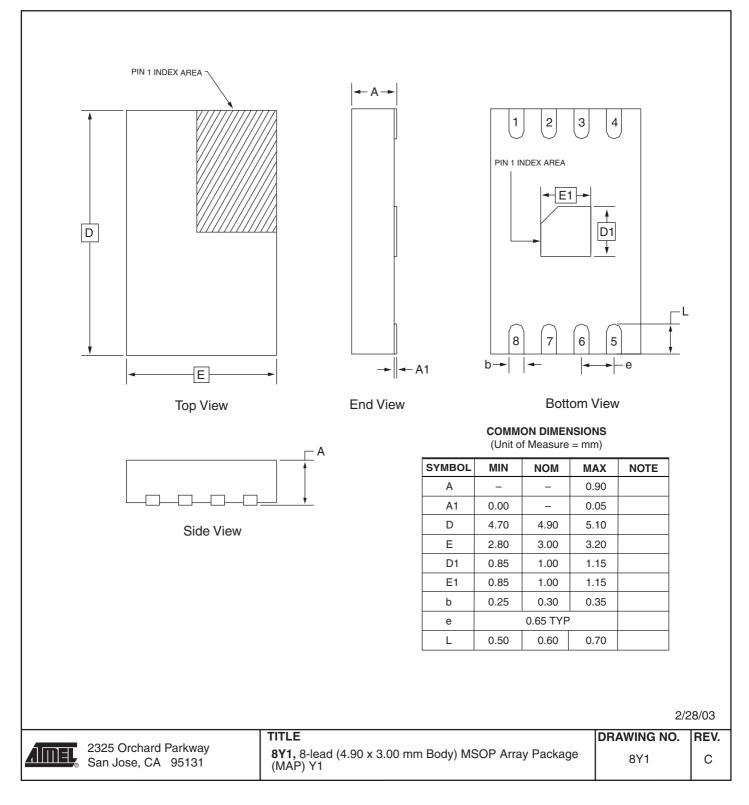
AT93C86A


8Y6 - MLP 2x3 mm



AMEL

8S1 – JEDEC SOIC


8A2 – TSSOP

8Y1 - MAP

Revision History

Doc. Rev.	Date	Comments
3408H	1/2007	Add "Bottom View" to pg 1 Ultra Thin MiniMap package drawing pg 4 revise Note 1 added "ensured by characterization"
3408G	7/2006	Revision history implemented. Deleted 'Preliminary' status from datasheet; Added 'Ultra Thin' description to MLP 2x3 package; Deleted '1.8V not available' on Figure 1 Note; Added 1.8V range on Table 4 under Write Cycle Time.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

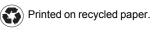
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759


Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2007 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, Everywhere You Are[®] and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

3408H-SEEPR-1/07